f2(s1(x), y) -> f2(x, s1(x))
f2(x, s1(y)) -> f2(y, x)
↳ QTRS
↳ DependencyPairsProof
f2(s1(x), y) -> f2(x, s1(x))
f2(x, s1(y)) -> f2(y, x)
F2(s1(x), y) -> F2(x, s1(x))
F2(x, s1(y)) -> F2(y, x)
f2(s1(x), y) -> f2(x, s1(x))
f2(x, s1(y)) -> f2(y, x)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
F2(s1(x), y) -> F2(x, s1(x))
F2(x, s1(y)) -> F2(y, x)
f2(s1(x), y) -> f2(x, s1(x))
f2(x, s1(y)) -> f2(y, x)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F2(s1(x), y) -> F2(x, s1(x))
Used ordering: Polynomial Order [17,21] with Interpretation:
F2(x, s1(y)) -> F2(y, x)
POL( F2(x1, x2) ) = max{0, 2x1 + x2 - 3}
POL( s1(x1) ) = 2x1 + 3
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
F2(x, s1(y)) -> F2(y, x)
f2(s1(x), y) -> f2(x, s1(x))
f2(x, s1(y)) -> f2(y, x)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F2(x, s1(y)) -> F2(y, x)
POL( F2(x1, x2) ) = max{0, x1 + x2 - 2}
POL( s1(x1) ) = x1 + 3
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
f2(s1(x), y) -> f2(x, s1(x))
f2(x, s1(y)) -> f2(y, x)